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FINAL TECHNICAL REPORT

This is the final report for the AFOSR-sponsored research project, "Electrochemical

Synthesis of Ultrathin Film Composite Membranes." This report summarizes progress

made during the period June 1, 1990 to May 31, 1993.

I. Summary We have developed four new methods for synthesizing ultrathin film

composite membranes. These methods are based on electrochemical, photochemical, redox

and condensation polymerizations of ultrathin polymeric films at the surfaces of

microporous support membranes. We can now make ultrathin film composite membranes

based on nearly any desired polymer, including complex co- and terpolymers. This has

created a tremendous opportunity for exploring the chemical, electrochemical and

transport properties of thin film composites based on a wide variety of new materials. In

addition, we have recently developed a new concept in electrochemical sensors--sensors

based on ultrathin film composite membranes. This new concept in sensor design offers a

number of advantages relative to existing sensor types. Finally, we have also developed a

new approach for preparation of metal/polymer Schottky barriers based on our ultrathin

film composite membranes. Hence, it is clear that the synthetic methods we are

developing will have an important impact on the field of electrochemical science and

technology.

II. Body. See following pages.



I. Introduction. Membranes are used in a wide variety of chemical applications including

uses in electrochemical science (1) and in membrane-based separations (2). The membrane

typically acts as a selective barrier, allowing some desired chemical species to pass while

rejecting (or impeding transport of) other chemical species. For example, in many

electrochemical applications, the membrane is asked to transport a specific ionic species

(e.g. OH- (3)) from one half-cell to another and reject all other ions. Obviously, the ideal

membrane would provide both high selectivity and high permeability. That is, the

ideal membrane would both discriminate very well between the desired permeant molecule

and the molecules to be rejected and allow the desired molecule to pass unimpeded.

Unfc.tunately, most membrane materiais are far from this ideal case. Indeed, most

membranes provide either high selectivity or high permeability but not both (see, e.g. 4-

6). 1 call this problem the "membrane-transport Catch-22."

The chemical and/or physical basis for the membrane-transport Catch-22 varies

with the type of membrane. For example, in the gas-separations membranes (4),

selectivity is obtained by making the polymer glassy. However, glassy polymers show

inherently low permeabilities (4) - hence the Catch-22. The bottom line is that the

membrane-transport Catch-22 is a stubbom barrier to further progress in membrane

science. Indeed, a recent report by the U.S. Department of Energy ranks strategies for

beating this problem as one of the top priorities in the membrane research area (5). A

synopsis of this DOE report was recently published in Chemical and Engineering

News. (7).

During the previous three years of AFOSR support, we have been exploring a

general solution to the membrane-transport Catch-22 - ultrathin film composite

membranes (8-16). Such composites consist of an ultrathin (less than 100 nm (1,000 A)

thick) film of a chemically-selective polymer bonded to the surface of a highly-porous support

membrane. The chemically-selective film provides for the desired chemical separation. This

film will necessarily have low permeability, but because it is ultrathin, the net flux across this
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film will be high (10). The requisite mechanical strength is provided by the support

membrane; furthermore, because it is highly-porous, it too will provide high flux. Hence, in

the net, the ultrathin film composite provides high chemical selectivity, high permeant flux and

good mechanical strength. This combination of properties would be impossible to achieve

with a homogeneous membrane (8-13).

Our research objectives in this area have been as follows:

1. Develop new chemical methods for preparing ultrathin film composite membranes.

2. Explore the fundamental transport properties of the resulting composite membranes.

3. Develop new chemical, electrochemical, and electronic applications of these membranes.

We have made tremendous progress in all three areas. For example, we have developed

four new methods for preparing ultrathin film composite membranes (8-14). These methods

are based on interfacial polymerization of polymer films at the surfaces of microporous

support membranes. We have developed methods based on interfacial electrochemical

.(8,9), photochemical (10), redox (11-13), and condensation (14) polymerizations. With these

methods, we can prepare ultrathin film composites based on nearly any polymer.

With regard to new applications, we have shown that such ultrathin film composite

membranes can form the basis of a new concept in sensor design (14). In addition we have

demonstrated that these composites can be used as electrorelease membranes for large

biomolecules such as insulin (15,16). Finally, we have shown that our interfacial

redox polymerization method can be used to make new metal/conductive polymer

Schottky barriers (13). Progress in these various aspects of this research effort will be

reviewed below.

I1. Review of Scientific Accomplishments During The Previous AFOSR Contract. Research

accomplishments are described in 36 research papers that have been published during the

course of the contract (9-43) and in another 3 manuscripts that have been either accepted or

submitted for publication (44-46).
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The membrane fabrication methods we have developed are based on the concept of

interfacial polymerization. Interfacial polymerization entails the synthesis of a polymer film,

from the corresponding monomer(s), at the interface between the surface of the support

membrane and a contacting solution or vapor phase. The key point is that because the

polymerization is confined to the interface defined by the surface of the support membrane,

the support membrane becomes coated with an ultrathin film of the polymer being

synthesized. We have shown that this approach can be used to prepare extraordinarily-thin,

defect-free films of various chemically-selective polymers (see below) at the surfaces of

various types of microporous support membranes. No other thin film coating method

currently approaches the power and versatility of these interfacial polymerization methods.

When the previous AFOSR contract was initiated, we had briefly described one new

interfacial polymerization method in a correspondence to the Journal of the American

Chemical Society. (8). This method is based on electrochemical polymerization of an

ultrathin polymer film at the surface of a microporous membrane. We have recently written a

full paper on this method (9). We have since developed three new, extremely powerful,

interfacial polymerization methods. These methods are based on photochemical (10), redox

(11-13), and condensation (14) polymerizations. These methods are used in the research

described in this proposal. Therefore, each of these methods is briefly reviewed below.

A. Interfacial Photochemical Polymerization. We described this method in a recent paper in

Nature (10). The microporous support membrane is placed on a filter paper that is saturated

with a solution of the desired monomer(s). This solution rises to the upper surface of the

membrane via capillary action and covers the membrane surface with a thin solution film.

The surface is then irradiated with ultraviolet light from a Xe arc lamp to photopolymerize the

monomer(s). The light strikes the membrane surface at an acute angle; this minimizes the

depth of penetration of the photons thus confining the polymerization to the membrane

surface. The rate of polymerization is enhanced by adding a photoinitiator (benzoin

methyl ether) to the vapor phase above the membrane.
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The photoinitiator induces radical polymerization (10); hence, this method is,

applicable to any of the enormous number of monomers that are susceptible to this

polymerization method. To illustrate this point, we have prepared ultrathin films from many

different monomeric starting materials (10). Interesting (and perhaps useful) functionalized

co- and terpolymers, have been prepared including electroactive and ion exchange

polymers. Furthermore, this method can be used with a variety of different microporous

support membranes. Finally, we have shown that this method can be used to prepare

composite membranes with defect-free films that are as thin as 40 nm (400 A) (10). (Our

methods for proving that a film is defect-free are reviewed below.) To our knowledge, there is

no other method that can produce composites with defect-free films that are this thin.

B. Proving that a Film is Defect-Free. If the ultrathin film that coats the support membrane

surface is defective, transport across the membrane will be dominated by these defects and

chemical selectivity will be lost (4). It is, therefore, essential that the film is defect-free. Gas-

transport measurements (4,8-14) provide the ultimate test for defects in such membranes.

These methods, which are used routinely in our lab, are briefly reviewed below.

Gas-transport data are obtained in a two-part cell (47). The lower half-cell is

evacuated; the upper half-cell contains a known (and constant) pressure of a desired gas

(e.g. 02, N2, CH4, etc.). The membrane to be investigated separates these two half-cells.

The flux of gas across the membrane is monitored via a pressure transducer in the lower half-

cell. At sufficiently long times (seconds to minute depending on the film thickness), a steady-

state flux across the membrane is achieved. If the rate of transport in the support membrane

is much faster than the rate of transport in the ultrathin polymer film, the permeability

coefficient (P) for the gas in the film can be obtained from this steady flux (8-14,39). This

condition is always satisfied with our highly-permeable support membranes.

If the polymer film is defect-free, gas is transported through the polymer by a

dissolution/molecular diffusion mechanism and the permeability coefficient is given by (4)

P = DS (1)
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where D is the diffusion coefficient and S is the Henry's law solubility coefficient for the gas in

the polymer. Ideal gas-transport selectivity coefficients for the polymer can be obtained by

ratioing the P values for two different gases. For example the ideal 02/N2 gas-transport

selectivity coefficient (aO/N) (e.g. Figure 1) is given by

aO/N = PO/PN (2)

As indicated in Equation !, if the film is defect-free, the value of the selectivity coefficient will

be dependent on the solubilities and diffusivities of the gases in the polymer.

In contrast, if even a minute number of microscopic defects are present in the film, gas

transport across the film will be dominated by Knudsen diffusion in these defects (4). If this is

the case, the selectivity coefficient for two gases in the membrane will be given by

al/ 2 = (MW2/MW)l1/ 2  (3)

where MW1 and MW2 are the molecular weights of the gases. For 02 and N2, this Knudsen-

diffusion selectivity coefficient is 0.93.

Therefore, if the film is defect-free, the ideal gas-transport selectivity coefficient (i.e.

Equations 1 and 2) will be obtained; this selectivity coefficient is typically significantly larger

than the Knudsen selectivity (see below). Furthermore, one can independently determine the

ideal selectivity coefficient by making measurements on thick films that are known to be

defect-free (10). In contrast, if even a minute number of defects are present, the Knudsen

selectivity coefficient (which can be independently calculated via Equation 3) will be

obtained. It is important to clarify what is meant by "minute number of defects." Hennis and

Tripodi have shown that the Knudsen selectivity coefficient will be obtained when the fraction

of the film surface that is defective is only 10-8 (4). Hence, it is clear why we assert that gas-

transport measurements provide the ultimate test for defects in membranes.

We will use the following operational definition for a "defect-free" ultrathin film. If the

selectivity coefficient measured for a particular ultrathin film is identical to that for a thick film

that is known to be defect-free, the ultrathin film is by definition "defect-free". What this really

means is that defects cannot be detected via a gas-transport measurement. However, since
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this is the most sensitivity approach for probing for defects, the film will be defect-free for

almost any desired application.

Finally, Table I shows 02 and N2 gas-transport data for a sulfonated styreneic polymer

(polymer IV in Figure 4) prepared via the photopolymerization method (10). Note that the

selectivity coefficients for all of the film thicknesses are identical and are almost an order of

magnitude larger than the Knudsen value. Furthermore, a thick defect-free film showed the

same selectivity coefficient. These data clearly show that there are "no defects" in any of

these thin film composite membranes (10). This is particularly remarkable for the case of the

40 nm-thick film since this is an extraordinarily thin film.

Table I. Gas-Transport Properties of a Composite Membrane Based on
The Sulfonated Styrenic (Polymer IV) Shown in Figure 4.

Film Thickness Permeability Coefficient* Separation

(nm) 02 N2 Factor 02/N2

2,300 0.54 0.066 8.2

150 0,55 0.068 8.0

40 0.57 0.071 8.0

*In Barrers. Units are 10-10 cm 3 (STP) cm/(cm2 s cm(Hg)).

C. Interfacial Redox Polymerization. This method is used to prepare ultrathin film composite

membranes based on electronically conductive polymers (11-13). These polymers have

interesting and potentially-useful electrochemical, electrochromic, and electronic properties

(32). In addition, we and Kaner et al. have shown that these polymers might be potentially

useful in membrane-based separations - in particular, gas separations (11,12,48). Hence,

we have, as part of the AFOSR-sponsored research effort, opened a new field in the
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electronically conductive polymers research area - fundamentals and applications of gas-

transport in conductive polymers. I presented an invited lecture on this subject at the

International Symposium on Synthetic Metals in Sweden last summer. The discussions after

my lecture indicated that there is considerable interest, worldwide, in this new field.

As before, the strategy for preparation of ultrathin film composites based on conductive

polymers is to create an interface that is defined by the surface of the membrane and to

synthesize the conductive polymer at this interface. The polymers we have employed can be

synthesized by oxidative polymerization; we have designed several interfacial

polymerizations based on this chemistry (11-13). The simplest (13) begins by placing the

support membrane over the opening of a vial that contains neat monomer (e.g. pyrrole,

thiophene, aniline). A measured volume of an aqueous solution of the oxidizing agent (e.g.

Fe 3 +) is applied across the upper surface of the support membrane. The oxidant solution fills

the pores of the support; however, because there is no hydrostatic head, the solution does

not drop into the vial containing the neat monomer. Instead, monomer vapor rises to the

lower surface of the membrane where it reacts with the oxidizing agent to form a film of the

corresponding polymer across this surface of the membrane (13).

Ultrathin film composite membranes based on electronically-conductive polymers

have many potential applications. For example, we have shown that the synthetic method

described above can be used to prepare metal/conductive polymer Schottky barriers (13).

Furthermore, we have used such composite membranes to open the new field of

electronically conductive polymers for membrane-based separations (11,12). Finally, these

composite membranes have potential applications in electrochemical sensors and as

anionically-conductive separator-membranes in electrochemical cells such as batteries.

D. Interfacial Condensation Polymerization. This method is used to prepare ultrathin film

composite membranes based on siloxane polymers. The siloxanes are an extremely

versatile family of polymers (49). The quintessential member of this family is poly(dimethyl-
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siloxane). These polymers can be synthesized by condensation polymerization of the

appropriate silane with water. For example, poly(dimethylsiloxane) can be prepared

via condensatioio jolymerization of dichlorodimethyl silane (14).

The versatility of this family of polymers stems from the ease with which other

monomers can be added to the polymerization solution to impart a desired property to the

resulting polymer. For example, a cross-linking monomer such as trichloromethyl silane

can be added. Or, as we have shown (14), a cation-exchange siloxane polymer can be

prepared by incorporating the monomer [2-(4-(chlorosulfonyl)-phenyl)ethyl] trimethoxy

silane into the polymer and then hydrolyzing the sulfonyl chloride to the sulfonic acid. The

versatility of this approach for making polymers is enhanced by the fact that an enormous

number of hydrolytically unstable silanes are commercially available.

The siloxane polymers have another important attribute that is particularly useful in

applications that involve transport. The parent polymer (poly(dimethylsiloxane)) has a glass-

transition temperature (Tg) of -127° C (50). This extraordinarily-low Tg insures that molecular

fluxes across films of such polymers will be high. Indeed, because of this low Tg, even large

organic molecules show appreciable fluxes through such polymers (51). While derivatization

of the parent polymer, for example with ionic groups (14), will clearly raise the Tg somewhat,

this family of polymers can, in general, be viewed as a class of high permeant-flux, but low

permeant-selectivity, materials. As we will see, these can be very useful attibutes.

The method that we have developed for forming ultrathin film composite membranes

via condensation polymerization of siloxane polymers (14) is identical to the interfacial redox

polymerization method except that pure water replaces the oxidant solution. We have shown

that this method can be used to form defect-free films that are as thin as 50 nm (14). We have

also shown that siloxane polymer films of this type can be chemically derivatized after film

formation by exposing the polymer film to a solution of a desired hydrolytically-unstable

silane (14). This results in chemical attachment of the desired silane to the chain ends of the
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siloxane polymer. This approach works because the siloxane chains end in -OH and thus act

as sites for attachment of hydrolytically-unstable silanes.

These siloxane polymer-based composites have a number of potential applications.

For example, we have shown that these membranes can form the basis of a new concept in

sensor design (14). The key advantages of this new sensor design are fast response

(because the device is based on an ultrathin film) and versatility (it should be applicable to

nearly any molecular-recognition chemistry and any signal-transduction method). To

demonstrate this new sensor concept, we prepared and evaluated a prototype

electrochemical glucose sensor (14). This sensor produced a linear response to glucose

over the physiologically-important concentration range. Furthermore, the response time was,

indeed, fast - less than 2 seconds. We believe that this might be a useful concept for the

design of future generations of chemical sensors.

I1l. Conclusione. The research effort during the previous three years of AFOSR support has

led to the development of new methods for preparing ultrathin film composite membranes

and new applications of such membranes. The objectives of the research effort, as spelled

out in the AFOSR proposal, were accomplished.
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